
Automatically Transforming Arrays to Columnar Storage
at Run Time∗

Sebastian Kloibhofer†
Johannes Kepler University

Linz, Austria
sebastian.kloibhofer@jku.at

Lukas Makor†
Johannes Kepler University

Linz, Austria
lukas.makor@jku.at

David Leopoldseder
Oracle Labs
Austria

david.leopoldseder@oracle.com

Daniele Bonetta
Oracle Labs
Netherlands

daniele.bonetta@oracle.com

Lukas Stadler
Oracle Labs
Austria

lukas.stadler@oracle.com

Hanspeter Mössenböck
Johannes Kepler University

Linz, Austria
hanspeter.moessenboeck@jku.at

ABSTRACT
Picking the right data structure for the right job is one of the key
challenges for every developer. However, especially in the realm
of object-oriented programming, the memory layout of data struc-
tures is often still suboptimal for certain data access patterns, due
to objects being scattered across the heap. Therefore, this work
presents an approach for the automated transformation of arrays
of objects into a contiguous format (called columnar arrays). At
run time, we identify suitable arrays, perform the transformation
and use a dynamic compiler to gain performance improvements.
In the evaluation, we show that our approach can improve the
performance of certain queries over large, uniform arrays.

CCS CONCEPTS
• Software and its engineering→ Dynamic compilers; Run-
time environments; Interpreters; • Information systems →
Column based storage.

KEYWORDS
Columnar Storage, Array Storage, Program optimization, Dynamic
Language, Dynamic Compilation
ACM Reference Format:
Sebastian Kloibhofer, Lukas Makor, David Leopoldseder, Daniele Bonetta,
Lukas Stadler, and Hanspeter Mössenböck. 2022. Automatically Transform-
ing Arrays to Columnar Storage at Run Time. In Proceedings of the 19th
International Conference on Managed Programming Languages and Runtimes
(MPLR ’22), September 14–15, 2022, Brussels, Belgium. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3546918.3560805

1 MOTIVATION
In object-oriented programs, we tend to store data as objects and
collect groups of such objects in arrays. While arrays are common
∗This research project is partially funded by Oracle Labs.
†Both authors contributed equally to the paper

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MPLR ’22, September 14–15, 2022, Brussels, Belgium
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9696-7/22/09.
https://doi.org/10.1145/3546918.3560805

bonus
salary

100
2600

150
3000

130
2200

...

...

emps 0 1 2 ...

100
2600

150
3000

130
2200

...

...
bonus

salary

transform emps

Figure 1: Array of objects vs. columnar array memory layout

and easy to use for developers, the scattered layout of the array
elements (the referenced objects may be placed randomly across
the heap) has disadvantages for certain computational patterns: If
we access individual object properties in a loop (as in Listing 1),
no caching can take place across iterations since arbitrary memory
positions have to be accessed [2]. The memory layout of such a
data structure is shown on the left-hand side in Fig. 1.

Columnar arrays are one solution to this problem: In a columnar
array, the elements’ property values are grouped in contiguous
memory regions (right-hand side of Fig. 1), such that an object
in the array at position 𝑖 has its property values located at the 𝑖-
th positions in the resulting arrays (𝑏𝑜𝑛𝑢𝑠 [𝑖], 𝑠𝑎𝑙𝑎𝑟𝑦 [𝑖]). Listing 2
shows an optimized version of Listing 1 that uses a columnar array.
Accessing the array in the loop now causes the property values of
adjacent elements to be cached, thus improving performance.

1 let total = 0
2 for (let i = 0; i < emps.length; i++)
3 total += emps[i]. salary

Listing 1: Salary aggregation over an array of employees

1 let total = 0
2 const salary = emps.salary
3 for (let i = 0; i < emps.length; i++)
4 total += salary[i] // replaces "emps[i]. salary"

Listing 2: Salary aggregation with a columnar array

While columnar arrays are often used in databases [1, 4, 16],
research has also highlighted their benefits for traditional applica-
tions. Mattis et al. [9] published a columnar array API for Python,
where the JIT compiler subsequently optimizes accesses. Pivarski et
al. [13] as well as Homann and Laenen [6], respectively, developed
a similar approach for C++—the former performing optimizations
on the Abstract Syntax Tree (AST) level and the latter optimizing
particle simulations. We detect applicable arrays at run time and
automatically transform them into columnar arrays, thus requiring
no code adaptation by the developer. We gain performance benefits
by performing custom compiler optimizations on columnar array
accesses during JIT compilation.

141

https://doi.org/10.1145/3546918.3560805
https://doi.org/10.1145/3546918.3560805
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3546918.3560805&domain=pdf&date_stamp=2022-11-30


MPLR ’22, September 14–15, 2022, Brussels, Belgium S. Kloibhofer, L. Makor, D. Leopoldseder, D. Bonetta, L. Stadler, and H. Mössenböck

JSObjectArray TrackingArray ColumnarArray

t

...
N

1EmptyArray

Insert object

change object type enable tracking
2 3

transform array storage

Writing elements Reading elements

...
M

New

Existing

Figure 2: Integration of the new array storage strategies that enable tracking and storage transformation

2 APPROACH
In this work, we summarize our approach [8] that we implemented
in the GraalVM JavaScript runtime [10]. This language implementa-
tion is based on the Truffle framework [5, 17, 18], which enables in-
tegration of guest languages [10–12, 14] via AST interpretation [19].
The GraalVM Compiler [3, 7, 15] enables us to implement custom
compiler phases based on columnar array accesses.

As JavaScript arrays are highly dynamic (they may contain arbi-
trary elements, may have holes, and may not start at index 0), their
representation in GraalVM JavaScript is described by an internal
storage strategy that defines, how the array elements are laid out
in memory. We leveraged this characteristic for the integration of
our approach by developing additional storage strategies, which
are depicted in Fig. 2.

After a new (empty) array is initialized, it is first assigned a
built-in default strategy (EmptyArray). When new elements are
inserted, a new strategy is assigned based on the element kinds.
The built-in JSObjectArray strategy indicates an array of objects
that starts at index 0 and ensures that the array does not have holes.
We adapted this strategy to track the size of arrays and trigger a
strategy change when the size exceeds a configurable threshold
(50000 by default). The new TrackingArray strategy then performs
more sophisticated (albeit costlier) tracking by counting the number
of array read accesses. This separation allows us to minimize the
tracking overhead for smaller arrays. After the read count exceeds
a second configurable threshold (25000 by default), the array is
automatically transformed to a columnar layout (ColumnarArray
strategy). During transformation, we verify that all elements in
the array have the same type. Then, we allocate arrays for each
property of the original array elements—we denote them as property
arrays—and fill them with the property values. This results in a
memory layout similar to the one in Fig. 1 (right-hand side).

While the transformation and the new array strategies are inte-
grated into the language implementation, performance benefits are
actually gained in the compiled code via custom compiler phases
that detect columnar arrays and their accesses. Due to our knowl-
edge about the columnar data structure, we can remove a number
of checks that the compiler would normally introduce. In the colum-
nar layout, we furthermore skip loading the object from the array
at compile time (emps[i]), as the property values are directly ac-
cessed from the property array (total += salary[i]). Additionally,
loading the property array from the columnar array (emps.salary)
is loop-invariant, hence most of the instructions are lifted from
the loop to achieve performance improvements in each loop itera-
tion. For the example in Listing 1, these optimizations result in a
representation similar to Listing 2 after compilation.

0.0
0.4
0.8
1.2
1.6
2.0

10
0

00
0

ite
m

s
re

l.
sp

ee
du

p

100 iterations 1000 iterations

0.0
2.0
4.0
6.0
8.0

10.0

1
00

0
00

0
ite

m
s

re
l.

sp
ee

du
p

aggregate
filterByDate

filter
filterByString

writeProperty
combinedOps

salaries

Figure 3: Microbenchmark throughput relative to baseline
without storage transformation (higher is better)

3 EVALUATION
To show the capabilities of our approach we designed a number of
JavaScript microbenchmarks that each implement a specific query
on a large array 1. As depicted in Fig. 3, we executed all microbench-
marks with different array sizes (100𝐾 and 1𝑀 items) and different
numbers of traversals of the whole array (100 and 1000 iterations).

Fig. 3 shows that our approach is currently not suitable for
smaller arrays, due to the overhead introduced by the transfor-
mation process. As array sizes and array traversals increase, how-
ever, the transformation overhead is amortized and the perfor-
mance of some benchmarks improves significantly. The bench-
marks aggregate, writeProperty, and combinedOps benefit the
most, with speedups of over 7𝑥 , 5𝑥 , and 9𝑥 , respectively. While the
performance of filter and salaries is improved as well, bench-
marks that use complex properties for filtering (filterByDate,
filterByString) are not or negatively impacted.

4 CONCLUSION
In this work, we developed an approach for automated storage
transformation in JavaScript that creates columnar arrays from
arrays of objects. As a consequence, we can speed up accesses to
these arrays. Hence, our approach is especially suited for processing
object arrays with loops. An evaluation of our approach on a set of
microbenchmarks shows that we can achieve significant speedups
on bulk operations on large arrays, while suffering from the trans-
formation overhead on smaller or more complex operations.

1Source code: https://github.com/lmakor-jku/data-intensive-js-benchmarks

142

https://github.com/lmakor-jku/data-intensive-js-benchmarks


Automatically Transforming Arrays to Columnar Storage at Run Time MPLR ’22, September 14–15, 2022, Brussels, Belgium

REFERENCES
[1] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-

Pipelining Query Execution. In Second Biennial Conference on Innovative Data
Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, Online Pro-
ceedings. www.cidrdb.org, Asilomar, CA, USA, 225–237.

[2] Ulrich Drepper. 2007. What Every Programmer Should Know about Memory.
Red Hat, Inc 11 (2007), 2007.

[3] Gilles Duboscq, Lukas Stadler, Thomas Wuerthinger, Doug Simon, Christian
Wimmer, and Hanspeter Mössenböck. 2013. Graal IR: An Extensible Declarative
Intermediate Representation. In Proceedings of the Asia-Pacific Programming
Languages and Compilers Workshop. Shenzhen, China, 9.

[4] Amit Dwivedi, C. Lamba, and Shweta Shukla. 2012. Performance Analysis of
Column Oriented Database Vs Row Oriented Database. International Journal of
Computer Applications 50 (July 2012), 31–34. https://doi.org/10.5120/7841-1050

[5] Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and
Hanspeter Mössenböck. 2015. High-Performance Cross-Language Interoper-
ability in a Multi-Language Runtime. In Proceedings of the 11th Symposium on
Dynamic Languages (DLS 2015). Association for Computing Machinery, New
York, NY, USA, 78–90. https://doi.org/10.1145/2816707.2816714

[6] Holger Homann and Francois Laenen. 2018. SoAx: A Generic C++ Structure of
Arrays for Handling Particles in HPC Codes. Computer Physics Communications
224 (March 2018), 325–332. https://doi.org/10.1016/j.cpc.2017.11.015

[7] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon,
and Hanspeter Mössenböck. 2018. Dominance-Based Duplication Simulation
(DBDS): Code Duplication to Enable Compiler Optimizations. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization - CGO
2018. ACM Press, Vienna, Austria, 126–137. https://doi.org/10.1145/3168811

[8] Lukas Makor, Sebastian Kloibhofer, David Leopoldseder, Daniele Bonetta, Lukas
Stadler, and Hanspeter Mössenböck. 2022. Automatic Array Transformation to
Columnar Storage at Run Time. In Proceedings of the 19th International Conference
on Managed Programming Languages and Runtimes (MPLR 2022). Association
for Computing Machinery, Brussels, Belgium. https://doi.org/10.1145/3546918.
3546919

[9] Toni Mattis, Johannes Henning, Patrick Rein, Robert Hirschfeld, and Malte Ap-
peltauer. 2015. Columnar Objects: Improving the Performance of Analytical
Applications. In 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!). ACM, Pittsburgh PA

USA, 197–210. https://doi.org/10.1145/2814228.2814230
[10] Oracle. 2021. Graal.Js. https://github.com/graalvm/graaljs. (accessed 2020-09-09).
[11] Oracle. 2021. GraalPython. https://github.com/graalvm/graalpython. (accessed

2020-09-09).
[12] Oracle. 2021. TruffleRuby. https://github.com/oracle/truffleruby. (accessed

2020-09-09).
[13] Jim Pivarski, Peter Elmer, Brian Bockelman, and Zhe Zhang. 2017. Fast Access to

Columnar, Hierarchically Nested Data via Code Transformation. In 2017 IEEE
International Conference on Big Data (Big Data). IEEE, Boston, MA, USA, 253–262.
https://doi.org/10.1109/BigData.2017.8257933

[14] Manuel Rigger, Matthias Grimmer, and Hanspeter Mössenböck. 2016. Sulong -
Execution of LLVM-based Languages on the JVM: Position Paper. In Proceedings
of the 11th Workshop on Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems - ICOOOLPS ’16. ACM Press, Rome,
Italy, 1–4. https://doi.org/10.1145/3012408.3012416

[15] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Par-
tial Escape Analysis and Scalar Replacement for Java. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO
’14). ACM, Orlando, FL, USA, 165–174. https://doi.org/10.1145/2581122.2544157

[16] Mike Stonebraker, Daniel Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-Oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases (VLDB ’05). VLDB Endowment, Trondheim, Norway, 553–564.

[17] Christian Wimmer and Thomas Würthinger. 2012. Truffle: A Self-Optimizing
Runtime System. In Proceedings of the 3rd Annual Conference on Systems, Pro-
gramming, and Applications: Software for Humanity (SPLASH ’12). ACM, Tucson,
Arizona, USA, 13–14. https://doi.org/10.1145/2384716.2384723

[18] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to Rule Them All. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming &
Software (Onward! 2013). ACM, Indianapolis, Indiana, USA, 187–204. https:
//doi.org/10.1145/2509578.2509581

[19] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-Optimizing AST Interpreters. In Proceedings of
the 8th Symposium on Dynamic Languages (DLS ’12). Association for Computing
Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/2384577.2384587

143

https://doi.org/10.5120/7841-1050
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1016/j.cpc.2017.11.015
https://doi.org/10.1145/3168811
https://doi.org/10.1145/3546918.3546919
https://doi.org/10.1145/3546918.3546919
https://doi.org/10.1145/2814228.2814230
https://github.com/graalvm/graaljs
https://github.com/graalvm/graalpython
https://github.com/oracle/truffleruby
https://doi.org/10.1109/BigData.2017.8257933
https://doi.org/10.1145/3012408.3012416
https://doi.org/10.1145/2581122.2544157
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587

	Abstract
	1 Motivation
	2 Approach
	3 Evaluation
	4 Conclusion
	References

