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ABSTRACT
Picking the right data structure for the right job is one of the key
challenges for every developer. However, especially in the realm
of object-oriented programming, the memory layout of data struc-
tures is often still suboptimal for certain data access patterns, due
to objects being scattered across the heap. Therefore, this work
presents an approach for the automated transformation of arrays
of objects into a contiguous format (called columnar arrays). At
run time, we identify suitable arrays, perform the transformation
and use a dynamic compiler to gain performance improvements.
In the evaluation, we show that our approach can improve the
performance of certain queries over large, uniform arrays.
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1 MOTIVATION
In object-oriented programs, we tend to store data as objects and
collect groups of such objects in arrays. While arrays are common
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Figure 1: Array of objects vs. columnar array memory layout

and easy to use for developers, the scattered layout of the array
elements (the referenced objects may be placed randomly across
the heap) has disadvantages for certain computational patterns: If
we access individual object properties in a loop (as in Listing 1),
no caching can take place across iterations since arbitrary memory
positions have to be accessed [2]. The memory layout of such a
data structure is shown on the left-hand side in Fig. 1.

Columnar arrays are one solution to this problem: In a columnar
array, the elements’ property values are grouped in contiguous
memory regions (right-hand side of Fig. 1), such that an object
in the array at position 𝑖 has its property values located at the 𝑖-
th positions in the resulting arrays (𝑏𝑜𝑛𝑢𝑠 [𝑖], 𝑠𝑎𝑙𝑎𝑟𝑦 [𝑖]). Listing 2
shows an optimized version of Listing 1 that uses a columnar array.
Accessing the array in the loop now causes the property values of
adjacent elements to be cached, thus improving performance.

1 let total = 0
2 for (let i = 0; i < emps.length; i++)
3 total += emps[i]. salary

Listing 1: Salary aggregation over an array of employees

1 let total = 0
2 const salary = emps.salary
3 for (let i = 0; i < emps.length; i++)
4 total += salary[i] // replaces "emps[i]. salary"

Listing 2: Salary aggregation with a columnar array

While columnar arrays are often used in databases [1, 4, 16],
research has also highlighted their benefits for traditional applica-
tions. Mattis et al. [9] published a columnar array API for Python,
where the JIT compiler subsequently optimizes accesses. Pivarski et
al. [13] as well as Homann and Laenen [6], respectively, developed
a similar approach for C++—the former performing optimizations
on the Abstract Syntax Tree (AST) level and the latter optimizing
particle simulations. We detect applicable arrays at run time and
automatically transform them into columnar arrays, thus requiring
no code adaptation by the developer. We gain performance benefits
by performing custom compiler optimizations on columnar array
accesses during JIT compilation.
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Figure 2: Integration of the new array storage strategies that enable tracking and storage transformation

2 APPROACH
In this work, we summarize our approach [8] that we implemented
in the GraalVM JavaScript runtime [10]. This language implementa-
tion is based on the Truffle framework [5, 17, 18], which enables in-
tegration of guest languages [10–12, 14] via AST interpretation [19].
The GraalVM Compiler [3, 7, 15] enables us to implement custom
compiler phases based on columnar array accesses.

As JavaScript arrays are highly dynamic (they may contain arbi-
trary elements, may have holes, and may not start at index 0), their
representation in GraalVM JavaScript is described by an internal
storage strategy that defines, how the array elements are laid out
in memory. We leveraged this characteristic for the integration of
our approach by developing additional storage strategies, which
are depicted in Fig. 2.

After a new (empty) array is initialized, it is first assigned a
built-in default strategy (EmptyArray). When new elements are
inserted, a new strategy is assigned based on the element kinds.
The built-in JSObjectArray strategy indicates an array of objects
that starts at index 0 and ensures that the array does not have holes.
We adapted this strategy to track the size of arrays and trigger a
strategy change when the size exceeds a configurable threshold
(50000 by default). The new TrackingArray strategy then performs
more sophisticated (albeit costlier) tracking by counting the number
of array read accesses. This separation allows us to minimize the
tracking overhead for smaller arrays. After the read count exceeds
a second configurable threshold (25000 by default), the array is
automatically transformed to a columnar layout (ColumnarArray
strategy). During transformation, we verify that all elements in
the array have the same type. Then, we allocate arrays for each
property of the original array elements—we denote them as property
arrays—and fill them with the property values. This results in a
memory layout similar to the one in Fig. 1 (right-hand side).

While the transformation and the new array strategies are inte-
grated into the language implementation, performance benefits are
actually gained in the compiled code via custom compiler phases
that detect columnar arrays and their accesses. Due to our knowl-
edge about the columnar data structure, we can remove a number
of checks that the compiler would normally introduce. In the colum-
nar layout, we furthermore skip loading the object from the array
at compile time (emps[i]), as the property values are directly ac-
cessed from the property array (total += salary[i]). Additionally,
loading the property array from the columnar array (emps.salary)
is loop-invariant, hence most of the instructions are lifted from
the loop to achieve performance improvements in each loop itera-
tion. For the example in Listing 1, these optimizations result in a
representation similar to Listing 2 after compilation.
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Figure 3: Microbenchmark throughput relative to baseline
without storage transformation (higher is better)

3 EVALUATION
To show the capabilities of our approach we designed a number of
JavaScript microbenchmarks that each implement a specific query
on a large array 1. As depicted in Fig. 3, we executed all microbench-
marks with different array sizes (100𝐾 and 1𝑀 items) and different
numbers of traversals of the whole array (100 and 1000 iterations).

Fig. 3 shows that our approach is currently not suitable for
smaller arrays, due to the overhead introduced by the transfor-
mation process. As array sizes and array traversals increase, how-
ever, the transformation overhead is amortized and the perfor-
mance of some benchmarks improves significantly. The bench-
marks aggregate, writeProperty, and combinedOps benefit the
most, with speedups of over 7𝑥 , 5𝑥 , and 9𝑥 , respectively. While the
performance of filter and salaries is improved as well, bench-
marks that use complex properties for filtering (filterByDate,
filterByString) are not or negatively impacted.

4 CONCLUSION
In this work, we developed an approach for automated storage
transformation in JavaScript that creates columnar arrays from
arrays of objects. As a consequence, we can speed up accesses to
these arrays. Hence, our approach is especially suited for processing
object arrays with loops. An evaluation of our approach on a set of
microbenchmarks shows that we can achieve significant speedups
on bulk operations on large arrays, while suffering from the trans-
formation overhead on smaller or more complex operations.

1Source code: https://github.com/lmakor-jku/data-intensive-js-benchmarks
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